

ON Semiconductor®

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

EcoSPARK® 300mJ, 400V, N-Channel Ignition IGBT

General Description

The ISL9V3040D3S, ISL9V3040S3S, ISL9V3040P3, and ISL9V3040S3 are the next generation ignition IGBTs that offer outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D²-Pak (TO-263), and TO-262 and TO-220 plastic packages. This device is intended for use in automotive ignition circuits, specifically as a coil driver. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK® devices can be custom made to specific clamp voltages. Contact your nearest On Semiconductor sales office for more information.

Formerly Developmental Type 49362

Applications

- · Automotive Ignition Coil Driver Circuits
- · Coil- On Plug Applications

Features

- Space saving D-Pak package availability
- SCIS Energy = 300mJ at T_J = 25°C
- · Logic Level Gate Drive

Package JEDEC TO-263AB D²-Pak JEDEC TO-252AA D-Pak COLLECTOR G G COLLECTOR (FLANGE)

Device Maximum Ratings TA = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	430	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V
E _{SCIS25}	At Starting T _J = 25°C, I _{SCIS} = 14.2A, L = 3.0 mHy	300	mJ
E _{SCIS150}	At Starting $T_J = 150$ °C, $I_{SCIS} = 10.6$ A, $L = 3.0$ mHy	170	mJ
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	21	Α
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	17	Α
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
P_{D}	Power Dissipation Total T _C = 25°C	150	W
	Power Dissipation Derating T _C > 25°C	1.0	W/°C
TJ	Operating Junction Temperature Range	-40 to 175	°C
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C
TL	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	4	kV

Device Marking		Device	Device Package		Reel Size	Таре	Width	Qua	antity
V3040D		ISL9V3040D3ST		D-252AA	330mm	16mm		2500	
V3040S		ISL9V3040S3ST	TO	D-263AB	330mm	24mm		800	
V3040P		ISL9V3040P3	TO	D-220AB	Tube	N/A		50	
V3040S		ISL9V3040S3	TO-262AA		Tube	N/A		50	
V3040D		ISL9V3040D3S	TC	D-252AA	Tube	N/A		75	
V3040S ISL9V3040S3S		ISL9V3040S3S	TO-263AB		Tube	N/A		50	
ectrica	al Char	racteristics T _A = 25	5°C un	less otherwise	noted				
Symbol	T TIME	Parameter	o un	ī	nditions	Min	Тур	Max	Unit
f State	Charact	eristics							
BV _{CER}		r to Emitter Breakdown Vo	Itage	$I_C = 2mA, V_G$	<u> </u>	370	400	430	V
- CER	0000101	Jones La Linker Breakdown voltage			$R_G = 1K\Omega$, See Fig. 15			.50	"
				$T_J = -40 \text{ to } 150^{\circ}\text{C}$					
BV _{CES}	Collector	r to Emitter Breakdown Vo	I _C = 10mA, V	390	420	450	V		
				$R_G = 0$, See		7			
DV	:44 4 -	- O-H-st DrI-I V	14	$T_J = -40 \text{ to } 15$		20			
BV _{ECS}	Emitter to Collector Breakdown Voltage			I _C = -75mA, \ T _C = 25°C	30	-	-	V	
BV _{GES}	Gate to F	Emitter Breakdown Voltage	9	$I_{GES} = \pm 2mA$	\	±12	±14	_	V
I _{CER}		to Emitter Leakage Curre		V _{CER} = 250V				25	μA
CER		3		$R_G = 1K\Omega$	T _C = 150°C		-	1	mA
				See Fig. 11	C				
I _{ECS}	Emitter to	o Collector Leakage Curre	ent	$V_{EC} = 24V, Se$	_	-	-	1	mA
				Fig. 11	$T_C = 150$ °C	-	-	40	mA
R ₁	Series G	ate Resistance				-	70	-	Ω
R ₂	Gate to E	Emitter Resistance				10K	-	26K	Ω
n State (Characte	eristics							
V _{CE(SAT)}	Collector	to Emitter Saturation Volt	age	I _C = 6A,	$T_C = 25^{\circ}C$,	<i>-</i>	1.25	1.60	V
				V _{GE} = 4V	See Fig. 3				
$V_{CE(SAT)}$	Collector	r to Emitter Saturation Volt	age	$I_{\rm C} = 10A$	T _C = 150°C,	-	1.58	1.80	V
\ /	Callagtar	to Emitter Caturation Valt	000	$V_{GE} = 4.5V$	See Fig. 4		1.00	2.20	V
V _{CE(SAT)}	Collector	r to Emitter Saturation Volt	age	$I_C = 15A,$ $V_{GE} = 4.5V$	T _C = 150°C	-	1.90	2.20	V
/namic (Charact	eristics			•				
Q _{G(ON)}	Gate Cha			I _C = 10A, V _{CE}	- = 12V	-	17	-	nC
G(ON)	Outo Oil	u.go		$V_{GE} = 5V$, Se			- ''		
V _{GE(TH)}	Gate to E	Emitter Threshold Voltage		$I_C = 1.0 \text{mA},$	T _C = 25°C	1.3	-	2.2	V
-()				V _{CE} = V _{GE} ,	T _C = 150°C	0.75	-	1.8	V
			1	See Fig. 10			01		
V _{GEP}	Gate to E	Emitter Plateau Voltage		I _C = 10A, V _{CE}	= 12V		3.0		V
vitching	Charac	cteristics							
t _{d(ON)R}	Current 7	Turn-On Delay Time-Resis	stive	V _{CE} = 14V, R _I	_ = 1Ω,	-	0.7	4	μs
t _{rR}	Current F	Rise Time-Resistive		V_{GE} = 5V, R_{G}		-	2.1	7	μs
				$T_J = 25^{\circ}C, Se$				 	
t _{d(OFF)L}	_	Turn-Off Delay Time-Induc	ctive	$V_{CE} = 300V, L = 500\mu Hy,$		_	4.8	15	μs
t _{fL}	Current F	Fall Time-Inductive		V_{GE} = 5V, R_G = 1K Ω T_J = 25°C, See Fig. 12		_	2.8	15	μs
SCIS	Self Clan	mped Inductive Switching	$T_{.1} = 25$ °C, L = 3.0 mHy,		-	-	300	mJ	
				$R_G = 1K\Omega$, V					
				Fig. 1 & 2			<u> </u>		
ormal C	haracte	eristics						<u></u>	
ierinai C	ilai acte								

Typical Performance Curves

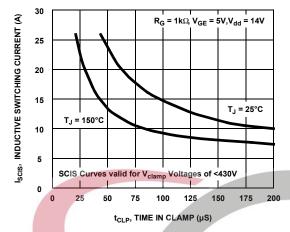


Figure 1. Self Clamped Inductive Switching
Current vs Time in Clamp

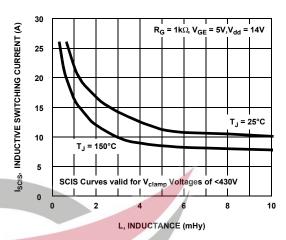


Figure 2. Self Clamped Inductive Switching Current vs Inductance

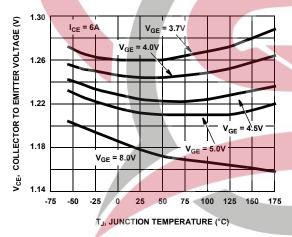


Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

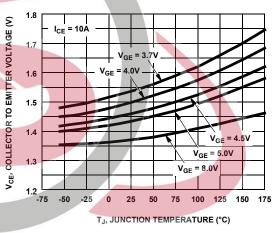


Figure 4. Collector to Emitter On-State Voltage vs Junction Temperature

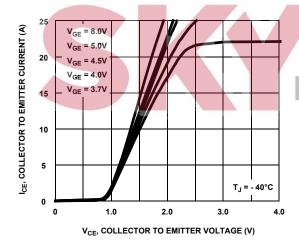


Figure 5. Collector to Emitter On-State Voltage vs Collector Current

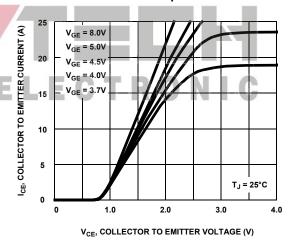
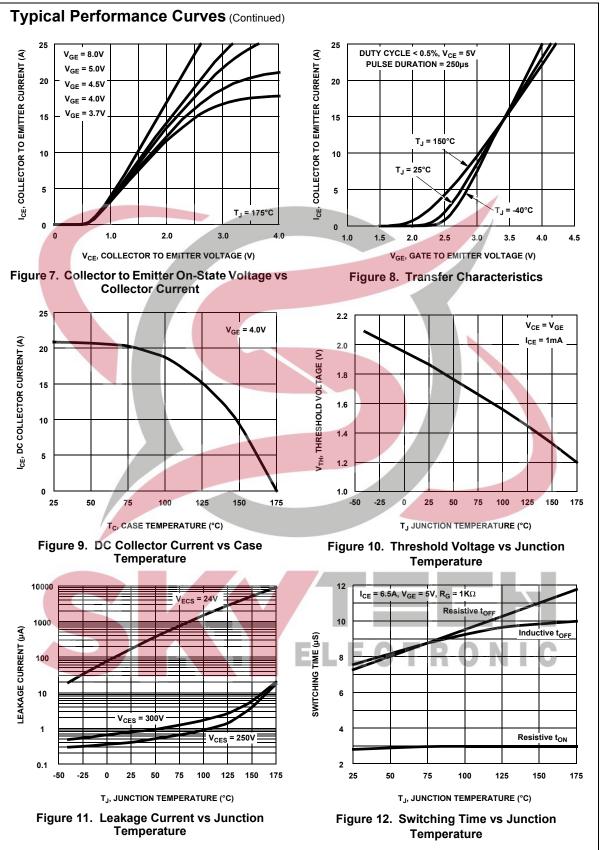
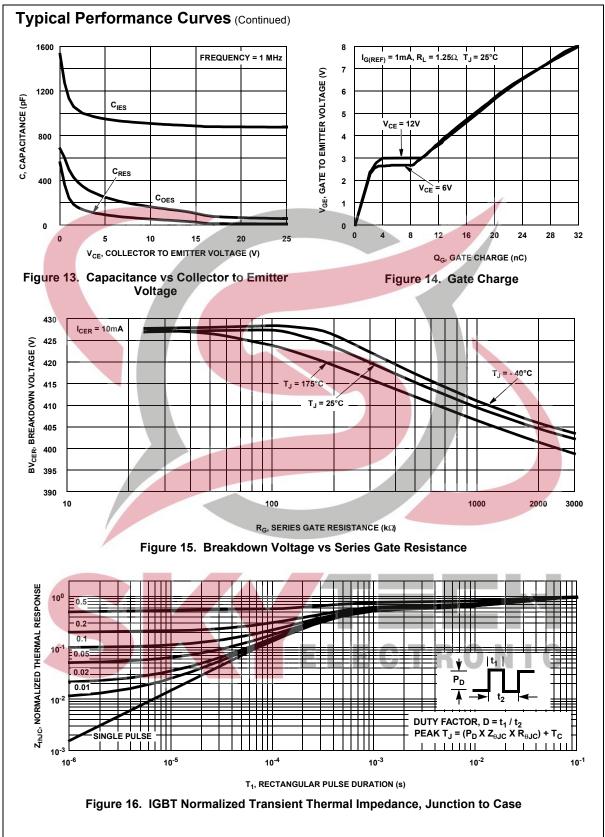




Figure 6. Collector to Emitter On-State Voltage vs Collector Current

Test Circuit and Waveforms

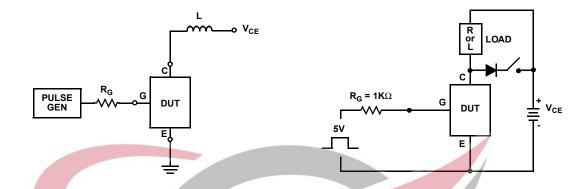


Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

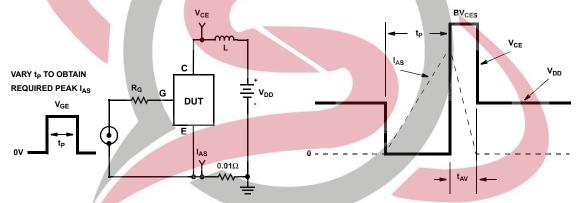
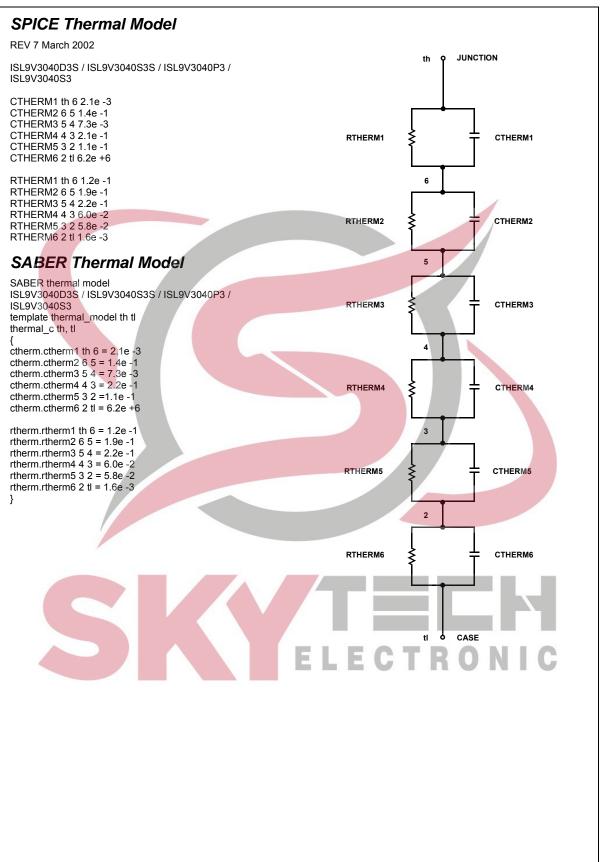



Figure 19. Energy Test Circuit

Figure 20. Energy Waveforms

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability on semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, not does on semiconductor assume any individual arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

N. American Technical Support: 800-282-9855 Toll Free

Phone: 81-3-5817-1050

USA/Canada

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative